Useful Discounting Formulae

1. End Value: Time t value of V_0.
 \[V_t = V_0(1 + r)^t \]
 \[(1)\]

2. Present Value: Time 0 value of V_t.
 \[V_0 = \frac{V_t}{(1 + r)^t} \]
 \[(2)\]

3. PV, compounded monthly for m months: Time 0 value of V_m.
 \[V_0 = \frac{V_m}{(1 + \frac{r}{12})^m} \]
 \[(3)\]

4. PV (continuous compounding).
 \[V_0 = Ve^{-rt} \]
 \[(4)\]

5. PV of perpetual annual series: Receive K every year in perpetuity (starting next year!)
 \[V_0 = \frac{K}{r} \]
 \[(5)\]

6. PV of terminable annual series: Receive K every year until year T.
 \[V_0 = K\frac{(1 + r)^T - 1}{r(1 + r)^T} \]
 \[(6)\]

7. PV of perpetual periodic series: Receive K every j years in perpetuity.
 \[V_0 = \frac{K}{(1 + r)^j} - 1 \]
 \[(7)\]

8. PV of terminable periodic series: Receive K every j years until year T.
 \[V_0 = K\frac{(1 + r)^T - 1}{(1 + r)^T[(1 + r)^j - 1]} \]
 \[(8)\]