Sustainable Watershed Management

A short course by:
Bren School of Environmental Science & Management
and UCSB Extension

1. Introduction

Prof. Arturo A. Keller

Managing water resources in a watershed in a sustainable manner

- Sustainability:
 - Consider long-term future as well as present
 - Multi-objective
 - Not equal to invariant…
 - Must consider inherent variability in natural system
 - Changing land and water uses in watershed
 - Changing public perception and interests
Objective of the Course

- Provide an approach and toolkit to develop a Watershed Management Plan
- Consider water quantity and quality within the planning process
- Incorporate short, medium and long term objectives into the planning framework
- Analyze several case studies to put approach and toolkit into practical context

Course Outline

- Day One:
 - Sustainable Management
 - Water Policy
 - Elements of a Watershed Management Plan (WMP)
 - Planning the Development of a WMP
 - Identifying Data Sources
 - Survey of Modeling Tools in Support of a WMP
Course Outline

Day Two:
- Downloading datasets
- Defining the watershed
- Setting up the watershed model
- Incorporating point and non-point sources
- Modeling water quantity
- Modeling water quality
- Understanding the watershed response
- Addressing management questions with the watershed model

Day Three:
- Case studies of Watershed Management Plans
 - Santa Clara River, CA
 - Tucson, AZ
 - Santa Ana River, CA
 - ZeroNet Program, NM
- Incorporating Management Activities
 - Structural Best Management Practices (BMPs)
 - Non-structural BMPs
 - Other policy and management activities
- Special considerations for Watershed Management
 - Dealing with uncertainties in the planning process
 - San Cristobal, Chiapas, Mexico
 - What missing data is most valuable for the planning process?
- Summary
Mechanics of the Course

- **Day One**
 - Meet in Bren Hall (BH) 1510 (9AM – 4:30PM)
 - Lunch served at noon – one hour break
- **Day Two**
 - Meet in GIS Lab (BH 3510) (9AM – 4:30PM)
 - Lunch served at noon – one hour break
- **Day Three**
 - Meet in Bren Hall (BH) 1510 (9AM - 3PM)
 - Lunch served at noon – one hour break

Reading Materials

- **Suggested textbook**
 - Watersheds : Processes, Assessment and Management
 - Paul A. DeBarry
 - Publisher: Wiley (July 9, 2004)
- **Supplemented with other readings**
 - Available online at:
 - www.bren.ucsb.edu/~keller/swm.htm
Water Resources
Watershed Management

- Land Use & Land Use Change
 - Ag, Residential, Commercial, Industrial, Parks
 - Forests, Grasslands, Wetlands, …
- Land Management Practices
 - Physical changes
 - Chemical use & release
 - Introduction or elimination of biota
- Water Management Practices
 - Extraction or diversion from natural system
 - Changes to recharge of natural reservoirs
 - Physical modifications

Sustainability

- Easier to define situations that are not sustainable:
 - Excessive extraction of groundwater
 - Lower watertable
 - Increased energy consumption per unit of water extracted
 - Subsidence
 - Salt-water intrusion
 - Diminished baseflow
Sustainability

- Other examples of unsustainable management
 - Pollutant loading above the capacity of the system to assimilate the load
 - Concentrated discharges that result in localized hot spots
 - Practices that increase risk of flooding
 - Decrease in aesthetic or recreational value due to physical or biological changes

Sustainable Water Resources Mgmt

- “Availability of sufficient quantity and quality of water, at acceptable prices, now and in the future, without causing the environment to deteriorate.”

 Balance short- vs. long-term socioeconomic objectives
Sustainable Water Resources Mgmt

- Managing for sustainability sets a clear goal:
 - Resource must be managed in a responsible manner
 - Think about long-term implications of human activities
 - Need to consider human health AND needs of other species that depend on water resource

Sustainability and Change

- Essential to planning is anticipation of change
 - Change in demand and/or supply
 - Change in uses and criteria
 - Change in climate
- Adaptive Management must be built into planning process
 - Control/Monitoring points in time and space
 - Decision points
 - Review of objectives and approach
Sustainability and Scale

- What is the appropriate spatial scale?
 - Too large a scale (e.g. major river basins) may overlook unique local attributes
 - Economies
 - Ecosystems
 - Resources
 - Too small a scale (e.g. every hectare) may not be self-sufficient or sustainable

- What about time scales?
 - Short time scale may seem sustainable…
 - How long is long-term?
 - Can there be periods where some objectives are not met?
 - Abrupt changes in conditions?
 - Resilience?
 - Vulnerability?

Interbasin transfers may not be sustainable in the long-term
Sustainability and Variability

- Variability in flow AND quality is a natural phenomena
 - Ecosystems are adapted to variability
 - Some systems depend on variability to start some processes
- Uncertainty ≠ Variability
 - Variability may be characterized using statistical methods
 - Uncertainty is much tougher to characterize

Sustainability and Risk

- Risk Assessment:
 - What could go wrong?
 - What is the likelihood that this will happen?
 - What are the consequences?
- Risk Management:
 - Identify high risk events
 - High probability, high damage
 - Reduce probability and/or damage
 - Extreme events: low probability, high damage
Key Elements of a Sustainable Watershed Mgmt Plan

- Identify quantifiable criteria that contribute to
 - Human welfare
 - Ecological health
- Management Plan must
 - Ensure reliability of solutions
 - Determine resilience of elements to changes
 - Assess and minimize vulnerability
 - Identify and reduce sources of uncertainty that may significantly negatively affect the plan

Guidelines to Manage for Sustainability

- Identify and involve as many stakeholders as feasible
 - May need to re-scope spatial scale
- Develop a shared vision of desired social, economic and environmental goals
 - Consider present and future generations
 - Define reasonable planning horizon
- Identify ways for all parties to contribute to achieving shared vision
Guidelines to Manage for Sustainability

- Identify solutions/approaches that restore, enhance or maintain
 - Economic vitality
 - Environmental quality
 - Natural ecosystem biodiversity and health
 - Social and cultural community goals

Guidelines to Manage for Sustainability

- Integrate best science available into decision-making process
 - Uncertainty ≠ no action
 - Manage uncertainty within process
- Understand the watershed (components, processes, values and attributes) and its response
- Explain watershed response to stakeholders to help them make informed decisions
Guidelines to Manage for Sustainability

- Establish baseline conditions against which change can be measured
 - Pre-development condition may be hard to determine
 - Pristine condition may not exist
- Monitor and evaluate frequently to determine if goals and objectives are being achieved

Key Points

- Planning for Sustainability is imperative
- There are many aspects involved in the concept of Sustainability
- Watershed Management approach is generally an appropriate scale for thinking about Sustainability
- It’s hard work!