

\[
\sigma_{hv}^0 = 10^{-2.35 \cos^2 \frac{\theta}{\sin^2 \theta}} 10^{0.046 \tan \theta (k_h \sin \theta)^{1.1}} 0.7. \tag{1}
\]

Also, P. Dubois’ biography reflected incorrect information. The paragraph is corrected to read as follows:

Corrections to “Dielectric Properties of Soils in the 0.3–1.3-GHz Range”

Neil R. Peplinski, Fawwaz T. Ulaby, and Myron C. Dobson

In the above paper,1 (2) contains errors. The corrected equation should read as follows:

\[
\epsilon_e = \left[1 + \frac{\rho_h}{\rho_s} (\epsilon_s - 1) + m_w \epsilon_s - m_w \right]^{1/2}.
\]

In addition, \(\epsilon_e \) is the dielectric constant of the soil solids and is given by the explicit expression

\[
\epsilon_s = (1.01 + 0.44 \rho_s)^2 - 0.062.
\]

Manuscript received June 19, 1995.

The authors are with the Radiation Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor MI 48109 USA.

IEEE Log Number 9415173.

Corrections to “Measuring Soil Moisture with Imaging Radars”

Pascale C. Dubois, Jakob van Zyl, and Ted Engman

In the above paper,1 (1) contains errors. The corrected equation should read as follows:

\[
\sigma_{hh}^0 = 10^{-2.35 \cos^2 \frac{\theta}{\sin^2 \theta}} 10^{0.046 \tan \theta (k_h \sin \theta)^{1.1}} 0.7.
\]

Manuscript received September 18, 1995.

P. C. Dubois and J. van Zyl are with the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA.

T. Engman is with NASA Goddard Space Flight Center, Code 974, Greenbelt, MD 20771 USA.

IEEE Log Number 9415862.

Corrections to “Inferring Snow Wetness Using C-Band Data from SIR-C’s Polarimetric Synthetic Aperture Radar”

Jiancheng Shi and Jeff Dozier

In the above paper,1 the following corrections should be noted. Equation (9) should be written as

\[
D_T(\theta_i, \epsilon_s) = \frac{\sigma_{vv}}{\sigma_{hh}} = \frac{T_{22}^0(\theta_i, \epsilon_s)}{T_{11}^0(\theta_i, \epsilon_s)}.
\]

Equation (18) should be written as

\[
\sigma_{hv}^{vh} - D_{TV}(\theta_i, \epsilon_s) \sigma_{vv}^{vv} = \sigma_{hv}^{vh}(\theta_i, \epsilon_s, S_R),
\]

\[\quad - D_{TV}(\theta_i, \epsilon_s) \sigma_{vv}^{vv}(\theta_i, \epsilon_s, S_R).\]

Equation (19) should be written as

\[
\sigma_{tt}^{hh} + \sigma_{tt}^{vv} = \frac{D_{TV}(\theta_i, \epsilon_s) + D_{TH}(\theta_i, \epsilon_s)}{D_{TV}(\theta_i, \epsilon_s) D_{TH}(\theta_i, \epsilon_s)} \sigma_{hv}^{vh}.
\]

In (22), \(M_2 \) should be written as

\[
M_2 = \sigma_{hh} + \sigma_{vv} - D_{TS} \sigma_{hv}^{vh}.
\]

Manuscript received September 19, 1995.

J. Shi is with the Institute for Computational Earth System Science, University of California, Santa Barbara, CA 93106 USA.

J. Dozier was with the School of Environmental Science and Management, University of California, Santa Barbara, CA 93106 USA. He is now with the Institute for Computational Earth System Science, University of California, Santa Barbara, CA 93106 USA.

IEEE Log Number 9415883.